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Application of the HEC Preecriptive Reservoir Model
In the

Columbia River System

By Richard Hayes1 , Michael Burnham', and David Ford2

Abstract

The water resources of Columbia River system provide significant hydropower,
water supply, flood control, recreation, fishery and navigation benefits to the residents of
the Pacific Northwest. Increasingly, the competition among the users of the Columbia
system has been intensified by declining fishery resources. The Corps of Engineers
(Corps), U.S. Bureau of Reclamation (Reclamation) and Bonneville Power Administration
(BPA) are jointly conducting a review of fourteen federal projects within the Columbia
basin. This effort has been termed the Columbia River System Operation Review (SOR).
To provide the Corps SOR study team with a basis for more optimal allocation of system
resources, the Hydrologic Engineering Center (HEC) has applied the recently developed
Prescriptive Reservoir Model, HEC-PRM, to the major reservoirs of the Columbia River
system upstream of Bonneville Dam.

The HEC-PRM represents the Columbia system as a link-node network and uses
network-flow programming to optimize, in time and space, flow and storage in the system.
The representation of operational goals in HEC-PRM is accomplished through flow,
storage and energy economic penalty functions. Operational purposes represented by
penalty functions included hydropower, water supply, flood control, navigation, recreation,
and anadromous fish. The application was based on fifty year period-of-record with a
monthly time interval. The HEC data storage system, HEC-DSS, was utilized extensively
for data management and analysis of results.

This paper summarizes the interim findings of the second phase of this ongoing
application.

System Description

The Columbia River basin embraces approximately 259,000 sq. mi. (670,000 sq.
km.) of the Pacific Northwest from Canadian Province of British Columbia in the north to
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northern Nevada at its most southern point, and from the Pacific Ocean on the west to
Wyoming on the east. Major storage and run-of-river reservoirs on the Columbia and its
major tributaries (the Kootenai, Pend Orelle, Snake and Clearwater Rivers) are shown
in Figure 1.
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Figure 1 Columbia River System

Average annual runoff is about 275,000 cfs (7,790 cms), of which 25 percent
comes from Canada. Precipitation varies from an annual total of over 100 inches near
Mica in British Columbia and along Cascade Range at the basins western boundary to
about 6 inches in southern Idaho and central Washington. Runoff from the basin above
Bonneville Dam has a strong seasonal pattern with most runoff resulting from snowmelt
in April through July.
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Water Resources Develooment

Developmentiof federal reservoirs along the main stem of the Columbia began in
the 1930's primarlly tls consequence of nationwide unemployment during the Great
Depression. Bonneville, a Corps navigation and hydropower project, was begun by the
Works Progress Administration and was completed by the Corps in 1938. Grand Coulee,
Reclamation's mainstem Columbia irrigation and hydropower project, went in service in
1941. Energy from both projects contributed significantly to the regions rapid industrial
growth during World War II.

During the 1950's the Corps completed The Dalles, McNary, and Chief Joseph on
the Columbia and Albeni Falls on the Pend Oreille River. Reclamation added Hungry
Horse Reservoir on the Flathead River to the federal system in 1952. During the 1960's
the Corps continued development of the Columbia-Snake River Waterway navigation
system by finishing John Day on the Columbia and Ice Harbor and Lower Monumental
on the lower Snake River. Corps development in the Snake River basin continued in the
1970's with Little Goose and Lower Granite on the Snake River and Dworshak on the
North Fork of Clearwater River.

In January 1961, the United States and Canada became signatories to the
Columbia River Treaty. The treaty provided for cooperative development of four storage
projects to be operated for flood control and hydropower: Ubby in Montana; and Mica,
Arrow, and Duncan in British Columbia. Duncan, the first of the Canadian Treaty projects
was completed in 1967; Arrow (Hugh Keenleyside) was completed in 1968; and,Mic& was
completed in 1973. In 1975,the Corps completed Ubby Dam, the fourteenth federal
reservoir included in the ongoing System Operation Review (SOR) investigations.

In addition to the major federal and treaty projects,numerous other reservoirs have
been developed throughout the system principally for hydropower and irrigation. The
Columbia River Basin Master Water Control Manual (USACE,1984) indicates that the
Columbia Basin above its mouth includes 211 water control projects with a storage
greater than 5,000 acre-feet or installed capacity of 5 mW or more.

The Problem

While reservoir projects within the Columbia Basin have provided significant flood
control, irrigation, hydropower, recreation and navigation benefits for the region the
cumulative effect of these works coupled with pollution, over harvesting, and other habitat
changes have had an Impact on the Columbia River fishery. According to the Master
Water Control Manual, the 1911 harvest of Columbia River salmon and steelhead was
about 50 million pounds. This figure has been estimated to be approximately the natural
sustainable annual yield. The 1911 harvest stands in sharp contrast to the 10 million
pound harvest in 1989 cited in The Columbia River System: The Inside Story (Interagency
Team, 1991). The federal agencies and the fish and wildlife departments of Idaho,
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Oregon and Washington have invested heavily in physical facilities including fish
hatcheries, ladders, screens and bypass facilities.

Operation modifications to aid the downstream migration of juvenile salmon and
steelhead Including provisions for increased springtime flows and spillway discharges are
being utilized. Still other operation alternatives involving seasonal storage drawdowns,
primarily on the navigation impoundments of the lower Snake River and increased flows
from upstream storage reservoirs have been proposed. Operational or physical
modifications to meet changing demands or enhance any of the uses at the various
reservoirs and stream reaches of Columbia River will in all likelihood impact to some
degree one or more of the other system uses.

The problems of operating the coordinated system of flood control and hydropower
reservoirs by BPA, the Corps, and Reclamation are summarized in The Columbia River:
A System Under Stress (BPA, USACE, BuRec, 1990) in which they state:

Growth in our region, along with changing priorities, are putting our river
system increasingly under stress. There simply is not enough water flowing
in the system to meet ali the demands. Trade-off must be considered... in
recent years, demands by the various users of the river have increased
dramatically, resulting in increasing conflicts among uses.

Consequently, in 1990 the North Pacific Division (NPD) of the Corps of Engineers
proposed the interagency system operation review. To assist in the evaluation of the
system and the analysis of potential trade-offs NPD requested the Hydrologic Engineering
Center to provide technical assistance in the further development and application of the
Center's reservoir system optimization model, HEC-PRM.

HEC-PRM

The HEC has recently developed a prescriptive reservoir model to assist in the
analysis of Corps reservoir systems. This new model has been termed HEC-PRM
(USACE, 1991a). The term Pprescriptive" may be explained in part by comparison with
the characteristics of another HEC reservoir system model, the widely applied HEC-5
(USACE, 1982a). HEC-5 is classified as a "descriptive" reservoir model. Both types of
models are similar in that they require a sequence of flows and link-node descriptions for
continuity of flow. In a descriptive model, like HEC-5, operation policies are specified as
storage rule curves, channel capacities, hydropower energy demands, diversions and flow
requirements. The outcome of an HEC-5 simulation is typically a time series of flows,
stages, and energy production which is obtained by following a specified operation policy.
The evaluation of specified operation policies to select the "optimal" among those
simulated is left to the model user.
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HEC-PRM, on the other hand, uses as a formal objective function the minimization
of total system cost. The model uses a network flow solver developed by Jensen and
Bhaumlk (1974) to determine the optimal distribution of flow, storage and energy
production in space and time. The primary Input to the HEC-PRM model are "penalty
functions, which relate the consequence (cost) of flow, storage and energy production in
a system, and a network description to provide the basis for continuity as flow moves
through a system of links and nodes. The penalty functions provide an economic basis
for operation prioritization. The model automatically nominates alternative policies which
it evaluates with a built-in simulation module. Feasible alternatives are evaluated until a
minimum cost policy is determined.

For convenience, HEC-PRM input penalty functions and flow sequences, as well
as optimized flows and storages, are handled with HEC-DSS (USACE, 1990). The HEC-
DSS utility programs DSSMATH, DSSUTL and DSPLAY are used to develop, manage
and plot time series data. Two HEC-PRM utility programs PENF (a graphical penalty
function editor) and PRMPP (a post processor) are currently being developed and tested.

Columbia River HEC-PRM Apolication

HEC-PRM was demonstrated to be an appropriate tool for the analysis of
reservoirs with its first application on the Missouri River system. This application for the
Corps Missouri River Division (MRD) on the Corps' six mainstem reservoirs was
completed in 1990 (USACE, 1991b). The Missou, River system, from the stand point of
system optimization, is a relatively straight foreword system with six large tandem
reservoirs under the same management. The competing interests in the Missouri system
included lake recreation, hydropower production, flood control, water supply and
downstream navigation and environmental concerns.

The Corps North Pacific Division (NPD) in 1990 proposed an interagency review
of the Columbia River system. The Columbia River, like the Missouri, has recently
experienced a system wide water shortage that exacerbated the competition among the
various system users. The two systems are similar in that they both have almost the
same types of competing interests. The principle exception being in the Missouri system
the major environmental concern is maintenance of steady flows for sand bar nesting
birds; whereas, the major environmental concern of the Columbia system is the
maintenance of seasonal flows to aid the downstream migration salmon and steelhead.

The NPD, as a part of the SOR requested HEC to test the applicability of HEC-
PRM to the more complex and larger Columbia River system. This effort, termed Phase
I, was initiated in and completed in 1991. It was anticipated that a second phase would
follow with more economic detail if the Phase I application proved successful. The
findings of the Phase I of the application are reported in Columbia River System Analysis
Model - Phase I (USACE, 1991b). The results of the Phase I application verified the
applicability of HEC-PRM to a complex system such as the Columbia. It was determined
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that the HEC would proceed with the second phase of the analysis. It was agreed that
this effort would include the following: expansion of the network to include more storage
reservoirs; enhancements to the HEC-PRM hydropower analysis capability; analysis of
several alternatives; and a workshop to transfer the technology the Corps SOR team.

HEC began the second phase of the application in fall of 1991. The Phase II
network configuration is shown in Figure 2. The network includes fourteen storage
reservoirs, five run-of-river (pondage) reservoirs and three non-reservoir locations.
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Figure 2 Singlo-perid Netork M~odl of Columbia River Syste

During the Phase I application it was noted that HEC-PRM storages for Corra Unn
(Lake Kootenay), a Canadian hydropower project on the Kootenay River, did not
correspond to the simulation results of NPD's HYSSR (USACE,1 982b) simulation model
to the degree deemed reasonable. Upon investigation is was determined that Corra Linn
did not have sufficient outlet capacity to prevent storage from exceeding upper storage
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limit. It was further determined that two other reservoirs in the system could also exhibit
the same characteristic. The other two are Kerr (Flathead Lake) and Albeni Falls (Lake
Pend Oreille). All three are similar in that they are control structures located on a river
reach some distance from a natural lake. In order to model these reservoirs, the nominal
upper storage was raised to an arbitrarily high value and a restrictive maximum flow limit
was specified. To discourage HEC-PRM from utilizing this zone in other than a flood
condition, the reservoir storage penalties were modified to inflict a relatively high cost for
storage above the nominal full pool. The results obtained h",e been determined to be
appropriate for the current application. It is anticipated that polices determined with HEC-
PRM will be modeled with a simulation model, in this case HYSSR, which can provide the
additional operational details. Reservoir storage and flow limits are shown in Table 1.

Table I
Columbia River System Storage and Release Umits

Storage Umits. 1000 Acre-Feet Rolease Limbts - CFS

Reservoir Minimum Maximum Minimum Maximum

Ubby 889.9 5,869.4 3,000 -

Corra Linn 1440 9,999.0 - 55,940

Duncan 30.0 1,398.6 100 -

Hungry Horse 486.0 3,647.1 400 -

Kerr 572.3 9,999.0 1,500 54,930

Albeni Falls 446.4 9,999.0 129,800

Dworshak 1,462.2 3,468.0 1,000

Brownlee 431.7 1,426.7 5,000

Granite 144.0 1,825.0 -

Mica (AIs. 1 & 2) 13,075.0 20,075.0

Mica (AIL 3) 8,000.0 20,075.0

Arrow 227.0 7,327.0 5,000

Grand Coulee 3,879.0 9,107.4 -

McNary 1,170.0 1,350.0

John Day 1,989.0 Z523.0

Penalty functions are the "guiding light" with which HEC-PRM determines the
optimal distribution of flow and storage in time and space. For the Columbia River
application, penalty functions represented the following six types of system uses:
hydropower; flood control; navigation; anadromous fish; water supply; and, recreation.
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The hydropower penalty function is expressed in terms of both flow and variable storage.
Each of the other uses were expressed in terms of a flow penalty in $Aaf (1,000's acre
feet per month) or a storage penalty in $/kaf. Penalty functions are varied monthly to
reflect the seasonal nature of the various purposes. At each location, the various penalty
functions are combined to create a composite function for each month. HEC-PRM
requires that all penalties must be piecewise linear convex functions. Figure 3 shows
how penalty functions are combined and how an approximate edited function is
determined to satisfy the convex requirement.

"Example" Storage Penalty Functions for April
1.000-

-- .- 0Waad T-

-- 00---- --- To l

00

0I I.. .i. -" . . .

0 5,000 10,000 15,000 90.000

Storage in KAF

Figure 3 How Penalty Functions are Combined and Approximated

Economic data to create the necessary penalty functions was developed by Corps
economists, planners, and engineers from NPD and the Divsion's Seattle, Portland and
Walla Walla Districts under the direction of the Corps Institute for Water Resources
(IWR). These data are documented in "Economic Value Functions for Columbia River
System Analysis Model, Phase I (Draft)*, (USACE, 1992). A graphical penalty function
editor (PENF), which was developed during this phase, was used to develop the edited
penalty functions. Economic data to develop penalty functions for the Canadian Treaty

8



reservoirs (Mica, Arrow and Duncan) were not available for use in this phase. Table 2
Indicates the purposes which were represented by economic penalty functions throughout
the network.

Analysis Overview

The operation for the system was based on flows for the period of 1928 to 1978.
Monthly flow data for this period, adjusted to a consistent level of development (1980)
were provided by NPD (USACE, 1983). Irrigation depletions, returns and reservoir
evaporation were accounted for in the flow data. Irrigation withdrawals from Grand
Coulee to Bureau of Reclamation's Columbia Basin Project were treated as a fixed
csaersion (e.g. not optimized). Three system operation scenarios were selected for
analysis, they were: Alternative 1, existing storage allocations with optimization for all
operation purposes; Alternative 2, existing storage allocations without optimization for
hydropower; and Alternative 3, five million acre-feet of additional storage in Mica,
optimization for all operation purposes.

To evaluate system performance of all alternatives with a consistent frame of
reference, which represented the presert system with current rules and objectives, the
results of NPD's continuous HYSSR simulation (SOR base case) were utilized. To
provide a valid economic comparison, HYSSR flows and storages were applied to HEC-
PRM storage, flow and hydropower penalty functions.

The analyses were performed on a 25 mHz 80486 MS-DOS personal computer
with 16 mb memory. The current version of HEC-PRM utilizes allocatable arrays and
virtual memory management, which make it extremely accommodating from a users point
of view. Execution times for Alternatives 1 and 3 (about 150,000 simultaneous linear
equations) for the 50 years of record were about fourteen hours each. For alternative 2,
which did not optimize for hydropower, about three hours of execution time was required.
Analyses for shorter time spans took significantly less execution time. It is worthwhile to
note that for the Columbia system, which has a relatively small amount of storage
compared to the annual flow, the presumed requirement to run the entire period of record
in a single optimization run is not valid. The analyst has merely to start and end the
optimization period at times when the system would be reliably full, which, in the case of
the Columbia system, is frequently the case at the end of spring runoff.

To compare the analyses results, performance of all three alternatives and the
HYSSR simulation have been computed with the following indices: total system penalty
(as computed with HEC-PRM); reliability (the frequency of meeting monthly targets);
resiliency (the frequency of recovery after a failure); and vulnerability (the average
deviation from the target when a failure occurs).

9



Tabl 2
Colubia RlvWr Sysem Phase 0 Network Unke an Operation Purposes Penalty Functions

Original Terminal Unk Operation purposes modeled
Node' Node' TypeW FC Hydro Nay lrr/WS Fish Rec

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lbby ubby so
Ubby Bonners Ferry H / S
Bonners Ferry Corra Unn C /
Duncan Duncan S
Duncan Corna LUM R ,/
Corra Unn Cows Linn S
Cors Unn Coulee R
Hungry Horse Hungry Horse S ,.
Hungry Horse Columbia Falls H /
Columbia Fabls Kerr C S
Kerr Kerr S ,
Kerr Thompson H I /
Thompson Thompson S
Thompson Albenl H S
Albe Alberd S S S
Albeni Coulee H O f
Dworshak Dworshak S ,
Dworshak Spakdg H S
Spakedg Granite C S
Browniee Brownlee S
Brownlee Granite H S
Granite Grarnte S , . ,
Granite McNary H S S
Mica Mica S
Mica Arrow R
Arrow Arrow S
Arrow coulee R
Coulee Coulee S / ,
Coulee Webs H S
Wels Wells S
Wells Rocky Reach H S
Rocky Reach Rocky Reach S
Rocky Reach Rock Island H ,
Rock Island Rock Island S
Rock Island McNary H S
McNary McNary S ,
McNary John Day H ,
John Day John Day S S
John Day Dalles H I
Dalles Dalles S
Dalles Sink H of /

oReler to Figure 2 for revaive boei-Aon of node*.
R - uinmple reemoir-reieme link; S = storage (pedod to pedod) Ink; H - hydropower reservoir-releme Hnk4 C -

hldwvel-flow Urd D - diversion Ink.
' FC = flood control; Hydro - hydr generaftn; Na =v navigation; lrr/WS . kigaftlon ar-/or water aiqpply;

Fish - fish prokcion; Rec - recreation.
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Optimization results contrasting the three alternatives with HYSSR results at
Dworshak Reservoir (storage) and The Dalles, (flow) are shown in Figures 4 and 5
respectively, for the period of 1928-1938.
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Study Status

A draft report, Columbia River Reservoir System Analysis: Interim Findings, (Draft),
April 1993 has been transmitted to the North Pacific Division for review. It is anticipated
that a workshop to transfer the HEC-PRM model and the input files that were developed
in this study will be presented to Corps SOR team members in July 1993. At the time
of the workshop, it is expected that economic data to develop penalty functions for the
Canadian treaty reservoirs may become available. Additional work will be required to
develop reservoir operating rules which closely follow the optimal time series of storage
and flow, HEC hopes to assist NPD in this effort. The HEC will publish a Phase II report
at the conclusion of the study. HEC plans to make a version of HEC-PRM available to
the public by the middle of 1993.

Conclusion and Observations

1. HEC-PRM has been demonstrated to be capable of period-of-record optimization
of complex systems of reservoirs with commonly available computer systems.

2. The partially updated Phase I economic data which was the basis for this study
should be revisited.

3. Penalty data for the Canadian Treaty reservoirs should be developed.
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